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ABSTRACT
Recent advances in Graph Neural Networks (GNNs) have revo-
lutionized graph-structured data modeling, yet traditional GNNs
struggle with complex heterogeneous structures prevalent in real-
world scenarios. Despite progress in handling heterogeneous inter-
actions, two fundamental challenges persist: noisy data significantly
compromising embedding quality and learning performance, and
existing methods’ inability to capture intricate semantic transitions
among heterogeneous relations, which impacts downstream predic-
tions. To address these fundamental issues, we present the Heteroge-
neous Graph Diffusion Model (DiffGraph), a pioneering framework
that introduces an innovative cross-view denoising strategy. This
advanced approach transforms auxiliary heterogeneous data into
target semantic spaces, enabling precise distillation of task-relevant
information. At its core, DiffGraph features a sophisticated latent
heterogeneous graph diffusion mechanism, implementing a novel
forward and backward diffusion process for superior noise man-
agement. This methodology achieves simultaneous heterogeneous
graph denoising and cross-type transition, while significantly sim-
plifying graph generation through its latent-space diffusion capabil-
ities. Through rigorous experimental validation on both public and
industrial datasets, we demonstrate that DiffGraph consistently sur-
passes existing methods in link prediction and node classification
tasks, establishing new benchmarks for robustness and efficiency
in heterogeneous graph processing. The model implementation is
publicly available at: https://github.com/HKUDS/DiffGraph.

CCS CONCEPTS
• Information systems → Data mining; • Mathematics of
computing → Graph algorithms.
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1 INTRODUCTION
Learning with heterogeneous graphs has emerged as a pivotal para-
digm inmodern data science, reflecting the complexity of real-world
systems. Unlike homogeneous graphs with uniform node and edge
types, heterogeneous graphs encapsulate rich, multi-faceted inter-
actions among diverse entities, enabling more expressive data rep-
resentations. These advanced graph structures have demonstrated
remarkable effectiveness across numerous domains, from biblio-
graphic academic data [16, 39], medical data [5], to recommender
systems [44]. The fundamental objective lies in leveraging this in-
herent diversity to enhance various analytical tasks. By harnessing
these heterogeneous relationships, researchers have achieved signif-
icant breakthroughs in node classification [33], link prediction [8],
and graph classification [31], consistently demonstrating superior
performance compared to traditional homogeneous approaches.

Recent years have witnessed remarkable advancements in het-
erogeneous graph neural networks (HGNNs). Through relation-
awaremessage passing frameworks, earlier study [49] has improved
graph learning tasks by effectively capturing both complex struc-
tural patterns and diverse semantic information within heteroge-
neous graphs. Notable research works include HGT [33], which
leverages graph attention mechanisms to dynamically assess the im-
portance of various heterogeneous paths, thereby enhancing both
semantic-level and node-level representation learning. Similarly,
HeteGNN [49] introduces a framework that simultaneously mod-
els heterogeneous structures and their associated content features.
Building upon the success of self-supervised learning (SSL) [26, 46]
in addressing data scarcity and noise challenges, recent research
efforts[23, 33, 40] have effectively incorporated SSL techniques to
further advance heterogeneous graph learning capabilities.

Despite significant advances in heterogeneous graph learning,
two critical challenges remain insufficiently addressed. First, cur-
rent HGNN approaches demonstrate limited capability in handling
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heterogeneous noise. While self-supervised learning techniques,
particularly contrastive learning [40], attempt to mitigate data noise
through self-supervisory signals, they lack sophisticated mecha-
nisms for processing noisy data with complex heterogeneous se-
mantics. These methods primarily rely on simple random data
augmentations (e.g., feature masking, random walk), overlooking
the crucial interactions between different relation types that could
significantly impact noise distribution. Second, existing approaches
struggle to effectively model complex transition patterns among
heterogeneous relations. Although some methods employ attention
mechanisms [43] or meta paths [10] to capture dependencies, these
approaches are insufficient for encoding sophisticated semantic
transition processes between heterogeneous relation types, poten-
tially compromising the extraction of task-relevant information and
degrading downstream prediction performance. These observations
lead us to two fundamental research questions:

• How can we develop a robust learning paradigm that effectively
addresses and mitigates data noise in heterogeneous graphs?

• How can we accurately capture the complex semantic transition
processes across diverse relation types in heterogeneous graphs?

To address these challenges, we propose a dual-component so-
lution. First, we introduce an adaptive parametric function that
systematically filters noisy structures while preserving task-critical
information for downstream predictions. This function is specifi-
cally designed to encode heterogeneous semantics and structural
patterns, enabling effective characterization of complex noise dis-
tributions. Second, we develop an advanced semantic transition
model to capture intricate relationships across different relation
types, employing a fine-grained approach to accommodate diverse
heterogeneous semantic patterns and their evolutionary processes.

Inspired by the remarkable capabilities of diffusion models in
capturing complex data generation processes, we propose a novel
generative diffusion framework for heterogeneous graphs. Our ap-
proach implements a bi-directional process: a forward phase for
systematic noise addition and a backward phase for noise removal,
jointly enhancing model robustness against heterogeneous data
noise. Extending beyond conventional diffusionmodels, ourmethod
uniquely facilitates the transfer between auxiliary and target graph
views through multiple fine-grained diffusion steps, enabling pre-
cise modeling of semantic transitions at a granular level.

Following these ideas, we present a Heterogeneous Graph Dif-
fusion Model (DiffGraph). Our approach begins by identifying the
target subgraph containing node and edge types most crucial to
the prediction task, while designating the remaining structure as
the auxiliary graph for feature enhancement. A specialized hetero-
geneous graph encoder, built on graph convolutions, projects both
target and auxiliary graphs into a latent representation space. We
then introduce a novel latent heterogeneous graph diffusion mod-
ule that orchestrates forward and backward diffusion processes on
these encoded representations, with auxiliary graph data serving
as the diffusion source and target graph data providing denoising
training signals. Our proposed diffusion framework accomplishes
two key objectives: capturing complex noise distributions in het-
erogeneous graph data and modeling semantic transitions between
diverse relation types. By conducting noise addition and removal

operations in latent space rather than the original graph space, Diff-
Grapheffectively addresses the challenges of generating sparse and
discrete heterogeneous graph data. This design choice significantly
enhances the model’s capability for unbiased heterogeneous graph
modeling, overcoming traditional limitations in graph generation.
The main contributions of this paper can be summarized as follows:
• We propose the DiffGraph, a novel approach that enhances model
performance by systematically filtering non-essential semantic
information from heterogeneous graph structures.

• We develop an innovative hidden-space diffusion mechanism that
effectively removes noisy information through a sophisticated
multi-step process of controlled noise addition and denoising
within heterogeneous embeddings.

• Wepresent extensive experimental evaluations of DiffGraphacross
diverse datasets, demonstrating its superior effectiveness in both
link prediction and node classification tasks.

2 METHODOLOGY
This section outlines the details of the proposed DiffGraph frame-
work. The architecture of DiffGraph is illustrated in Figure 1.

2.1 Heterogeneous Graph Learning
Heterogeneous Graphs. In a heterogeneous graph, the node set
is denoted as V = {𝑣𝑖 }, with the set of node types denoted as V.
There exists a node typemapping function𝜙 : V → V, where𝜙 (𝑣𝑖 )
represents the type of node 𝑣𝑖 . Similarly, the set of edges is denoted
as E = {(𝑣𝑖 , 𝑣 𝑗 )}, with an edge type mapping function𝜓 : E → E.
Here, E denotes the set of edge types, and 𝜓 (𝑣𝑖 , 𝑣 𝑗 ) represents
the type of edge (𝑣𝑖 , 𝑣 𝑗 ). With these notations, we formally define
the heterogeneous graph as G = (V, E, 𝜙,𝜓 ). For convenience, a
heterogeneous graph is recorded by the binary adjacency matrix A
of size |V| × |V| × |E|. An entry 𝑎𝑟

𝑖, 𝑗
∈ A equals 1 if there is a link

of type 𝑟 ∈ E between nodes 𝑣𝑖 and 𝑣 𝑗 , otherwise 𝑎𝑟𝑖, 𝑗 = 0.
Heterogeneous Graph Prediction. A predictive model 𝑓 for het-
erogeneous graphs can be divided into an encoding phase and
a prediction phase, formally as: 𝑓 (G) = Pred ◦ Enc(G). The en-
coding phase Enc(·) learns 𝑑-dimensional hidden representations
E ∈ R |V |×𝑑 for nodes 𝑣𝑖 ∈ V , while the prediction phase Pred(·)
generates task-specific predictions based on the learned embed-
dings. Typical graph forecasting tasks include node classification
and link prediction. For node classification, the prediction network
Pred(·) of DiffGraph employs a multilayer perceptron (MLP) to
infer nodes’ classes from their learned embeddings. For link predic-
tion, the dot-product operator is utilized to infer the existence of
edges based on the embeddings of the connected nodes in Pred(·).

Motivated by the simplicity and effectiveness of Graph Convolu-
tional Networks (GCNs) [12], our DiffGraph adopts a GCN-based
encoding process for Enc(·), which is formally defined as follows:

E = Pooling({E𝑟 |𝑟 ∈ E}), E𝑟 =
∑︁𝐿

𝑙=0
E𝑟,𝑙

E𝑟,𝑙 = norm(𝛿 (D−1/2A𝑟D−1/2E𝑟,𝑙−1)) (1)

where A𝑟 ∈ R |V |× |V | denotes the specific adjacency matrix for
each heterogeneous relation 𝑟 ∈ E, and D denotes its corresponding
diagonal degree matrix. E𝑟,𝑙 ∈ R |V |×𝑑 represents the embedding
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Figure 1: Overall architecture of the proposed DiffGraph framework.

matrix at the 𝑙-th GCN iteration. For datasets without node fea-
tures, the initial embeddings E𝑟,0 are randomly initialized learnable
parameters. For datasets with node features, E𝑟,0 utilizes the initial
node features. During each iteration, the existing embeddings are
disseminated to adjacent nodes through the Laplacian-normalized
adjacency matrix, utilizing the activation function 𝛿 (·) and the 𝑙2
embedding normalization function norm(·). Following 𝐿 iterations,
the final node embeddings E𝑟 are generated from an element-wise
aggregation of multi-order node embeddings. And the final node
embeddings E is obtained by aggregate node embeddings E𝑟 of
different relation types with a pooling function.

2.2 Cross-view Heterogeneous Graph Denoising
2.2.1 Denoising Auxiliary Graphs using Target Graph. To
enhance the performance of heterogeneous graph prediction, we
propose a cross-view denoising approach to maximally extract
task-relevant information from heterogeneous graphs. Initially, we
identify the task-relevant subgraph within the compound hetero-
geneous graph as the target graph G𝑡 . An example of such a target
graph is the purchase behavior graph between users and items in
an e-commerce recommender system. Once this target graph G𝑡 is
removed from the entire graph G, the remaining graph is referred
to as the auxiliary graph G𝑠 (also known as the source graph).

Our cross-view denoising framework for heterogeneous graphs
aims to maximize the mutual information between the auxiliary
view and the target view by learning a parametric function 𝑔 that
maps the auxiliary graph space to the task-relevant data space. This
learnable denoising function 𝑔 takes the source graph data G𝑠 as
the input and utilizes the target graph data G𝑡 as labels. Specifically,
this denoising framework can be formulated as follows:

arg minΘ𝑓 ,Θ𝑔
L𝑚𝑎𝑖𝑛 (Y, 𝑓 (G)) + 𝜆 · L𝑑𝑒𝑛𝑜 (G𝑡 , 𝑔(G𝑠 )) (2)

where L𝑚𝑎𝑖𝑛 represents the loss for the main prediction task, such
as BPR loss [29] for link prediction and cross-entropy loss for node
classification. Here, Y denotes the task-specific labels. Meanwhile,
L𝑑𝑒𝑛𝑜 denotes the learning objective for our denoising function 𝑔,
which measures the differences between the task-relevant target
graph G𝑡 and the denoising output of function 𝑔. The learning pro-
cess tunes the parameter sets 𝜃 𝑓 and 𝜃𝑔 , which are parameters for
the forecasting model 𝑓 and the denoising network 𝑔, respectively.
A weighting parameter 𝜆 is used to balance the denoising task.

2.2.2 Latent Heterogeneous Graph Diffusion. Inspired by the
impressive performance of diffusion models in capturing complex
data generation processes across diverse data types [4], we propose
to instantiate our denoising function as a heterogeneous graph
diffusion model. This model aims to distill task-relevant informa-
tion from the auxiliary graph by iteratively refining the graph data.
Given the complexity of graph-structured data, we propose con-
ducting this diffusion process in the latent representation space
of the heterogeneous graph data. Specifically, our diffusion model
aims to achieve the following step-by-step transformation:

G∗
𝑠

𝜋
⇌ E∗𝑠

𝜑
−→ Ẽ∗𝑠

𝜑 ′
−→ Ê∗𝑠

𝜋 ′
⇌ Ĝ∗

𝑠 , G∗
𝑠 = {G1

𝑠 , ...,G𝑛
𝑠 } (3)

where 𝜋 and 𝜋 ′ denote the bidirectional mapping between the
graph-structured data and the latent representations. By utilizing
the heterogeneous GCN-based encoder in the prediction function 𝑓 ,
E∗𝑠 captures heterogeneous semantic information from the source
view. Function 𝜑 represents the forward diffusion process, which
incrementally adds noise to E∗

𝑠 . Correspondingly, 𝜑 ′ refers to the
reverse diffusion process, which removes the noise step by step.
Rationale for Latent Diffusion over Graph Diffusion. In the
context of graph-based task learning, the role of the graph encoder
is to aggregate the embeddings of neighboring nodes, transforming
the structural semantics of the graph into low-dimensional infor-
mation within the latent space. This characteristic suggests that
by learning the denoising process 𝜑 ′ within the latent space, our
hidden-space diffusion model can effectively filter out the imprecise
semantic differences within heterogeneous graphs, thereby better
supporting the learning of the target graph.

Moreover, graph data exhibits several challenging characteristics
that hinder effective diffusion, including its sparse and discrete
nature, as well as its large data space of exponential complexity.
In contrast, the latent space is dense and continuous, and as a
compressed representation of the graph, it usually has a smaller
size. These key advantages motivate us to conduct graph diffusion
in the latent representation space, instead of in the graph space.

2.2.3 Forward and Reverse Diffusion. Forward Process. The
forward process of our diffusion model consists of 𝑇 steps of grad-
ual noise addition. This process begins with the encoded hidden
representations, denoted as H0 = E∗

𝑠 . It then iteratively increases

T
高亮
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the noise ratio following the recursive formula below:

𝑞(H𝑡 |H𝑡−1) = N(H𝑡 ;
√︁

1 − 𝛽𝑡H𝑡−1, 𝛽𝑡 I) (4)

where 𝛽𝑡 controls the noise scale. N denotes the Gaussian dis-
tribution used to generate the noise, and the noise data H𝑡 will
progressively increase as 𝛽𝑡 increases, ultimately converging to
pure Gaussian noise [15]. This property allows our noise resolu-
tion methodology to cover a wide range of noise intensities within
the training data. The additive nature of the Gaussian distribution
enables us to directly compute the data at step 𝑡 using H0 and pre-
computed values related to the 𝛽𝑡 sequence. Specifically, we can
pre-calculate the following values to expedite the diffusion process:

𝛼𝑡 = 1 − 𝛽𝑡 , 𝛼𝑡 =

𝑇∏
𝑡 ′=1

𝛼𝑡 ′ , 𝛽𝑡 = 1 − 𝑏𝑡/𝑏𝑡−1 (5)

To determine 𝛽𝑡 at each step, we introduce two hyperparameters,
𝑏𝑚𝑎𝑥 and 𝑏𝑚𝑖𝑛 . These parameters generate a linear interpolation
sequence 𝑏 = (1, 𝑏𝑚𝑎𝑥 , · · · , 𝑏𝑚𝑖𝑛). Using the calculations from Eq 5,
we derive the following results:

H𝑡 =
√
𝛼𝑡H𝑡−1 +

√
1 − 𝛼𝑡 𝜉1

⇒ √
𝛼𝑡 (

√
𝛼𝑡−1H𝑡−2 +

√
1 − 𝛼𝑡−1𝜉2) +

√
1 − 𝛼𝑡 𝜉1

⇒
√
𝛼𝑡H0 +

√
1 − 𝛼𝑡 𝜉

′
𝑡 , 𝜉 ↦→ N (0, I) (6)

where 𝜉∗ represents independent Gaussian distributions. By pre-
calculating 𝛼𝑡 , we can leverage the additive properties to infer H𝑡

efficiently, bypassing the need for recursive computations.
Reverse Process. The purpose of the reverse process is to enable
DiffGraph to learn the denoising ability of noisy heterogeneous
semantic data. Specifically, we aim to reconstruct the heteroge-
neous relations in the hidden space from the noisy data H𝑡 . A
learnable neural network is employed to estimate the generation
of conditional probabilities for the following:

𝑝 (H𝑡−1 |H𝑡 ) = N (H𝑡−1; 𝜇𝜃 (H𝑡 , 𝑡),Σ𝜃 (H𝑡 , 𝑡)) (7)

where 𝜇𝜃 (·) and Σ𝜃 (·) are obtained from a two-layer neural net-
work with learning parameter 𝜃 , which is intended to be used for
estimating Gaussian distributions. The framework is defined:

𝜇𝜃 (h𝑡 , 𝑡) = MLP2 (h𝑡 ∥s𝑡 ), MLP(x) = 𝜎 (Wx + b) (8)

whereMLP2 (·) represents two continuous MLP layers. We concate-
nate the t-step hidden vectorh𝑡 with a time step-specific embedding
s𝑡 input data 𝑥 . 𝜎 , W and b denotes the activation function, linear
transformation and bias for the neural network respectively.

2.3 Model Training for DiffGraph
2.3.1 Diffusion Loss Function. To optimize the hidden-space
diffusion module, we adopt the embedding E𝑡 of the target graph
as the evidence lower bound (ELBO). Based on the data specific
to each side, h

′
0 = E𝑢 ,E𝑣 ∈ E𝑡 , the paradigm for maximizing the

ELBO can be summarized as follows:

log𝑝 (h
′
0) ≥ E𝑞 (h1 |h0 )

[
log𝑝𝜃

(
h

′
0 |h1

)]
︸                             ︷︷                             ︸

(reconstruction term)

(9)

−
𝑇∑︁
𝑡=2
E𝑞 (h𝑡 |h0 ) [𝐷KL (𝑞 (h𝑡−1 |h𝑡 ,h0) ∥𝑝𝜃 (h𝑡−1 |h𝑡 ))]︸                                                           ︷︷                                                           ︸

(denoising comparing term)

The model incorporates two optimization terms. The objective of
the denoising comparising term is to align the true distribution
𝑞 (h𝑡−1 |h𝑡 ,h0) more approximate our heterogeneous semantics de-
noiser 𝑝𝜃 (h𝑡−1 |h𝑡 )), thereby minimizing the KL divergence. Draw-
ing on the conclusions of previous works [15, 37], we can simplify
the study of the standard deviation as Σ𝜃 (h𝑡 , 𝑡) = 𝜎2 (𝑡)I. The L𝑡

for denoising comparising term can be transformed as follow:

L𝑡 = E𝑞 (h𝑡 |h0 )

[
1
2

(
𝛼𝑡−1

1 − 𝛼𝑡−1
− 𝛼𝑡

1 − 𝛼𝑡

)
∥ĥ𝜃 (h𝑡 , 𝑡) − h

′
0∥

2
2

]
(10)

where ĥ𝜃 (h𝑡 , 𝑡) denotes the data h0 predicted by h𝑡 and 𝑡 via a
Multi-Layer Perceptron (MLP), which indicated in Eq 8. From the
inference of Eq8, the reconstruction term can also be approximated
as the squared loss between the optimization ĥ𝜃 (h𝑡 , 𝑡) and the
target graph vector h

′
0 . We define it as:

L1 = E𝑞 (h𝑡 |h0 )
[
∥ê𝜃 (h1, 1) − h

′
0∥

2
2

]
(11)

It is noteworthy that the semantic information in the latent space
of the source heterogeneous graphs serves as the input for the
diffusion module, and the denoised embedding is optimized by
forming a control group with the semantic vector h

′
0 of the target

graph. In determining the number of steps 𝑡 , we employ a uniform
sampling strategy. Formally, the diffusion loss L𝑑𝑒𝑛𝑜 is as follows:

L𝑑𝑒𝑛𝑜 = E𝑡∼N(1,𝑡 )L𝑡 (12)

2.3.2 Prediction and Optimization. For the link prediction task,
we combine the denoised heterogeneous semantic relations of the
source graphs with the semantic relations of the target graph to
get the final embedding to make predictions. And we employ the
BPR loss function to optimize predictions 𝑦:

𝑦𝑖, 𝑗 = ẽ⊤𝑖 ẽ𝑗 , Ẽ = E𝑡 + Ê∗,

L𝑚𝑎𝑖𝑛 =
∑︁

𝑢,𝑣+,𝑣−
− log sigm(𝑦𝑢,𝑣+ − 𝑦𝑢,𝑣− ) (13)

where 𝑢, 𝑣+, 𝑣− stands for the positive and negative sample sam-
pling strategy [29]. For the node classification task, we utilize the
following cross entropy loss function:

𝑝𝑖,𝑐 = softmax(MLP(ẽ𝑖 ))𝑐 , L𝑚𝑎𝑖𝑛 = −
∑︁
𝑣𝑖 ∈V

log𝑝𝑖,𝑦𝑖 (14)

2.3.3 Model Complexity Analysis. This section gives a thor-
ough analysis on the time and space complexity of our DiffGraph.
Time Complexity. Initially, DiffGraph performs graph-level infor-
mation propagation on both the target collaborative graph G𝑡 and
the auxiliary heterogeneous graphs G∗ = {G1, ...,G𝑛, ...,G𝑁 }. This
standard graph convolutional process requiresO((|E𝑟 |+

∑𝑁
𝑙=1 |E𝑛 |)×

𝑑) calculations for message passing and O((|U| + |V|) × 𝑑2) for
embedding transformation. For recommedation task, our diffusion



DiffGraph: Heterogeneous Graph Diffusion Model WSDM ’25, March 10–14, 2025, Hannover, Germany

Table 1: Statistics of experimental datasets.
Dataset User # Item # Link # Interaction Types
Tmall 31882 31232 1,451,29 View, Favorite, Cart, Purchase

Retail Rocket 2174 30113 97,381 View, Cart, Transaction
IJCAI 17435 35920 799,368 View, Favorite, Cart, Purchase

Industry 1M 361 23,890,445 Purchase, Friend, Complete Task
Node Metapath

AMiner

Node Metapath

DBLP

Author:4057 APA Paper:6564 PAP
Paper:14328 APCPA Author:13329 PRP
Conference:20 APTPA Reference:35890 POS
Term:7723

process operates on the user side and item side at each training
epoch respectively. The forward diffusion process costs O(|U| ×𝑑)
and O(|V| × 𝑑) computations, while the reverse process costs
O(|U| × (𝑑2 + 𝑑𝑑′)) and O(|V| × (𝑑2 + 𝑑𝑑′)).For node classifica-
tion task, the diffusion process only performs on user-tie nodes,
which costs O(|U| ×𝑑) for forward diffusion process and O(|U| ×
(𝑑2 + 𝑑𝑑′)) for reverse process. In conclusion, DiffGraph achieves
comparable time costs to common heterogeneous recommenders.
Memory Complexity. The graph encoding process of our Dif-
fGraph model requires a similar number of parameters as con-
ventional graph-based heterogeneous models. The hidden-space
diffusion network employs O(𝑑2+𝑑𝑑′) parameters for the denoiser.

3 EVALUATION
We evaluate the performance of our DiffGraph framework by study-
ing the following Research Questions (RQs):
• RQ1: How does the proposed DiffGraph framework perform on
link prediction, node classification, and industry datasets?

• RQ2: How effective are the designed modules in DiffGraph?
• RQ3: How do different settings of key hyperparameters impact
the graph prediction accuracy of our DiffGraph method?

• RQ4: How is the efficiency of DiffGraph compared to baselines?
• RQ5: How effectively can our DiffGraph approach perform to
alleviate the issue of data sparsity for graph data?

• RQ6: Howwell canDiffGraph handle noisy heterogeneous graphs?
• RQ7: Can DiffGraph provide explanations in specific cases?

3.1 Experimental Settings
3.1.1 Datasets. We evaluate DiffGraph on link prediction and
node classification tasks. For link prediction, we utilize Tmall, Re-
tailrocket, and IJCAI datasets. For node classification, we employ
DBLP and AMiner (focusing on academic networks), along with
an Industry dataset from a gaming platform. Detailed statistics are
presented in Table 1, with dataset descriptions below.
Link Prediction Dataset: • Tmall: An E-commerce dataset with
user views, favorites, cart additions, and purchases, filtered to users
with ≥3 purchases [43]. • Retailrocket: A dataset with user page
views, cart additions, and transactions, where purchases are pri-
mary and other interactions auxiliary [44]. • IJCAI: A dataset from
IJCAI15 with heterogeneous user behaviors similar to Tmall.
NodeClassificationDataset: • Industry: A game platform dataset
with retention as target behavior and three auxiliary behaviors (pur-
chases, friendships, tasks), forming user-item, user-user, and user-
task graphs. • DBLP: A dataset subset of authors categorized into

four research areas (Database, Data Mining, AI, and Information
Retrieval) for node classification. • AMiner: A dataset containing
papers in four categories, utilizing meta-path relationships (author,
paper, conference, reference) for heterogeneous node classification.

3.1.2 BaselineMethods. For a thorough evaluation of DiffGraph,
we include the following 21 baselines from different research lines.
Recommendation Models with Heterogeneous Relations:
• NMTR [11]: It uses a multi-task learning framework with rede-
fined cascading relationships to explore diverse user behaviors.

• MATN [43]: This method uses a memory-augmented attention
mechanism for the modeling of multiple user behaviors.

• MBGCN [18]: It utilizes a GCN-based model to analyze multiple
patterns of behavior within the user-item interaction graph.

Heterogeneous Graph Neural Networks:
• Mp2vec [6]: This approach learns embedding vectors for meta
path in heterogeneous networks.

• HERec [30]: This method models recommendation and its auxil-
iary information as a heterogeneous information network.

• HetGNN [49]: It combines a two-module architecture and ran-
dom walk sampling process for heterogeneous graph learning.

• HGT [17]: This is a graph transformer architecture for encoding
diverse relationships in heterogeneous graphs.

• HAN [39]: This method uses a hierarchical attention mechanism
to aggregate information from nodes of multiple meta-paths.

• DMGI [27]: This heterogeneous graph learning method maxi-
mizes the mutual information between local and global views.

• HeCo [40]: It proposes a cross-view contrastive learning ap-
proach between two heterogeneous information networks.

Homogeneous Graph Convolutional Networks:
• GraphSage [13]: This model accomplishes graph node aggrega-
tion using a node-centric neighbor sampling approach.

• GCN [20]: It aggregates the neighboring nodes embedded after
linear projection and finally performs the average computation.

• GAE [19]: This is a variational auto-encoding approach for un-
supervised graph representation learning.

• GAT [34]: This is a graph attention network that differentiates
weights of different neighbors for the central nodes.

• LightGCN [14]: It employs a lightweight graph convolutional
network architecture for the effective aggregation.

• DGI [35]: This method learns node embeddings by maximizing
the mutual information between local and global graph views.

• GraphMAE [35]: It applies the masked auto-encoding training
objective to learn node embeddings for downstream tasks.

• PinSAGE [45]: This approach facilitate efficient graph neural
networks for web-scale recommendataion.

• NGCF [38]: This is one of the early work that applies graph
neural networks to modeling recommendation graphs.

Non-Graph Neural Networks:
• BPR [29]: This baseline enhances matrix factorization by utiliz-
ing the Bayesian personalized ranking loss.

• DNN: This is a deep neural network for node classification.
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3.1.3 Evaluation Protocols. The evaluation protocols for our
DiffGraph and the baselines in our experiments are as follows:

• For link prediction, we used leave-one-out strategy by gener-
ating the test set from users’ last interacted items under the
target behavior. The evaluation metrics used were Recall@20
and NDCG@20, widely adopted in ranking-based evaluations.

• For node classification using public datasets DBLP and Aminer,
we use 20, 40 and 60 labeled nodes for each class as the training
set and 1000 nodes as the validation set and test set, respectively.
In our experiments, we used the widely used metrics MicroF1,
Macro-F1 and AUC for evaluation.

• For the node classification task on the Industry dataset, it adopts
a more realistic data split scheme, in which the training set and
the test set are made of users and interactions of different time
periods. Both the training set and the test set contain 1 million
user nodes, respectively, and the evaluation metric is AUC with
application to the prediction of user retention.

3.1.4 Hyperparameter Settings. The experiments were con-
ducted on a device with an NVIDIA TITAN RTX GPU and an Intel
Xeon W-2133 CPU. The hyperparameter settings are as follows:

• Link Prediction Task: We adjusted the learning rate among
{1𝑒 − 2, 1𝑒 − 3, 1𝑒 − 4}. For graph models, the depth of graph prop-
agation layers was tuned within {1, 2, 3, 4}. We use 𝑙2 regular-
ization when training, with the strength coefficient being tuned
across {1𝑒 − 1, 3𝑒 − 2, 1𝑒 − 2, 1𝑒 − 3}. For diffusion-related param-
eters, we varied the number of noise steps from 0 to 250, and the
noise scale was adjusted among {1𝑒−3, 1𝑒−4, 1𝑒−5}. The dimen-
sionality of embeddings is tuned from the range {8, 16, 32, 64},
and and the batch size is selected between 512 and 4096.

• Node Classification Task: For the public datasets DBLP and
AMiner, we follow the settings of HeCo. We set the hidden em-
bedding size to 64 and searched for the learning rate from 1e-4 to
5e-3. We varied the number of noise steps from 0 to 250, and the
noise scale was tuned among {1𝑒 − 4, 5𝑒 − 5, 1𝑒 − 5, 5𝑒 − 6, 1𝑒 − 6}.

3.2 Overall Performance Comparison (RQ1)
This section examines whether DiffGraph outperforms existing
baselines in different graph tasks. The results are presented in
Table 2. From the outcomes, we draw the following conclusions:

• Superior performance of DiffGraph. Across both link predic-
tion and node classification, DiffGraph consistently outperforms
all baselines, demonstrating superior performance. These results
underscore the advanced graph forecasting capabilities of the
DiffGraph framework. Additionally, the performance advantages
of DiffGraph on the industry dataset further validate its effective-
ness in real-world applications. We attribute this success to the
model’s ability to eliminate inaccurate and spurious semantics
from heterogeneous graph structures through the latent hetero-
geneous graph diffusion paradigm. This semantic refactoring
process enables the model to learn more precise and meaningful
heterogeneous relations, allowing DiffGraph to effectively mine
valuable heterogeneous information and enhance specific tasks.

• Effectiveness of heterogeneous relationships. The results in-
dicate that methods based on heterogeneous graph learning [17,
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Figure 2: Ablation study for modules in DiffGraph.

18] generally outperform those using traditional homogeneous
graph neural networks [20, 34, 38]. This advantage highlights
the positive role of auxiliary heterogeneous information in graph
forecasting tasks. By referring to more information with hetero-
geneous semantics, graph models can capture richer structural
information to improve the prediction accuracy. This advantage
is evident in both link prediction and node classification.

• Effectiveness of hidden-diffusion-based denoising. The per-
formance of DiffGraph surpasses that of state-of-the-art hetero-
geneous graph learning networks, a superiority attributed to the
efficacy of our hidden-space diffusion paradigm in denoising and
accurately reconstructing complex heterogeneous graph relation-
ships. The denoised source graph heterogeneous semantics serve
as a valuable aid in modeling the target graph relations, enabling
stronger optimization for the final prediction task.

3.3 Ablation Study (RQ2)
To study the impact of DiffGraph’s sub-modules, we remove or
replace essential modules and evaluate the resulting performance.
These ablated models include: i) -D: Omits the holistic diffusion
module. ii) -U: Disregards user-side information of recommenda-
tion data. iii) -I: Similar to -U, eliminates item-side information.
iv) -H: Excludes auxiliary heterogeneous graphs when training. v)
DAE: Replace the diffusion module with a denoising autoencoder.

The evaluation results for link prediction is listed in Figure 2.
We also conduct ablation study for node classification on the In-
dustry data. The results in terms of AUC, is as follows: -H, 0.7840,
-D, 0.7901, DAE, 0.7911, DiffGraph, 0.8025. Through meticulous
examination, we make the following noteworthy observations:

• Removing the diffusion module "-D" leads to performance degra-
dation, highlighting both the adverse effects of noise in auxiliary
heterogeneous data and demonstrating the effectiveness of our
latent feature-level diffusion model in its denoising function.

• Comparing "-U" to DiffGraph demonstrates the value of heteroge-
neous user aggregation. Similarly, "-I" and "-H" variants confirm
the benefits of heterogeneous information. Notably, "-D" out-
performing "-I" suggests that removing item-side diffusion both
loses valuable signals and introduces noise.

• The "DAE" variant shows only limited performance improvement
over completely removing the denoising module (i.e., "-D"). This
demonstrates the difficulty of denoising heterogeneous graph
data using existing DAE approaches. Consequently, it validates
the superiority of the stepwise noise addition and removal process
in our latent heterogeneous graph diffusion module.
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Table 2: Overall performance comparison on the link prediction and node classification tasks.
Link Prediction Performance on Public Datasets

Data BPR Pinsage NGCF NMTR MBGCN HGT MATN DiffGraph Improv p-val
R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20 R@20 N@20

Tmall 0.0248 0.0131 0.0368 0.0156 0.0399 0.0169 0.0441 0.0192 0.0419 0.0179 0.0431 0.0192 0.0463 0.0197 0.0589 0.0274 27.21% 39.09% 9.8-10 1.8-11
Rocket 0.0308 0.0237 0.0423 0.0248 0.0405 0.0257 0.0460 0.0265 0.0492 0.0258 0.0413 0.0250 0.0524 0.0302 0.0620 0.0367 18.32% 21.52% 1.65-9 3.5-9
IJCAI 0.0051 0.0037 0.0101 0.0041 0.0091 0.0035 0.0108 0.0048 0.0112 0.0045 0.0126 0.0051 0.0136 0.0054 0.0171 0.0063 25.74% 16.67% 3.1-11 2.0-4

Node Classification Performance on Industrial Dataset, in terms of AUC
Data DNN GraphSage GCN GAT LightGCN HAN HGT HeCo HGMAE DiffGraph
Ind. 0.7778 0.7836 0.7912 0.7871 0.7904 0.7909 0.7982 0.7915 0.7831 0.8025

Node Classification performance on public datasets
Dataset Metric GraphSage GAE Mp2vec HERec HetGNN HAN DGI DMGI HeCo GraphMAE DiffGraph

DBLP

Micro-F1
20 71.44±8.7 91.55±0.1 89.67±0.1 90.24±0.4 90.11±1.0 90.16±0.9 88.72±2.6 90.78±0.3 91.97±0.2 89.31±0.7 93.30±0.4
40 73.61±8.6 90.00±0.3 89.14±0.2 90.15±0.4 89.03±0.7 89.47±0.9 89.22±0.5 89.92±0.4 90.76±0.3 87.80±0.5 93.05±0.3
60 74.05±8.3 90.95±0.2 89.14±0.2 91.01±0.3 90.43±0.6 90.34±0.8 90.35±0.8 90.66±0.5 91.59±0.2 89.82±0.4 93.81±0.3

Macro-F1
20 71.97±8.4 90.90±0.1 88.98±0.2 89.57±0.4 89.51±1.1 89.31±0.9 87.93±2.4 89.94±0.4 91.28±0.2 87.94±0.7 93.03±0.4
40 73.69±8.4 89.60±0.3 88.68±0.2 89.73±0.4 88.61±0.8 88.87±1.0 88.62±0.6 89.25±0.4 90.34±0.3 86.85±0.7 92.81±0.3
60 73.86±8.1 90.08±0.2 90.25±0.1 90.18±0.3 89.56±0.5 89.20±0.8 89.19±0.9 89.46±0.6 90.64±0.3 88.07±0.6 93.16±0.3

Auc
20 90.59±4.3 98.15±0.1 97.69±0.0 98.21±0.2 97.96±0.4 98.07±0.6 96.99±1.4 97.75±0.3 98.32±0.1 92.23±3.0 99.20±0.1
40 91.42±4.0 97.85±0.1 97.08±0.0 97.93±0.1 97.70±0.3 97.48±0.6 97.12±0.4 97.23±0.2 98.06±0.1 91.76±2.5 98.84±0.1
60 91.73±3.8 98.37±0.1 98.00±0.0 98.49±0.1 97.97±0.2 97.96±0.5 97.76±0.5 97.72±0.4 98.59±0.1 91.63±2.5 99.21±0.1

AMiner

Micro-F1
20 49.68±3.1 65.78±2.9 60.82±0.4 63.64±1.1 61.49±2.5 68.86±4.6 62.39±3.9 63.93±3.3 78.81±1.3 68.21±0.3 80.55±0.6
40 52.10±2.2 71.34±1.8 69.66±0.6 71.57±0.7 68.47±2.2 76.89±1.6 63.87±2.9 63.60±2.5 80.53±0.7 74.23±0.2 83.29±1.3
60 51.36±2.2 67.70±1.9 63.92±0.5 69.76±0.8 65.61±2.2 74.73±1.4 63.10±3.0 62.51±2.6 82.46±1.4 72.28±0.2 82.10±1.0

Macro-F1
20 42.46±2.5 60.22±2.0 54.78±0.5 58.32±1.1 50.06±0.9 56.07±3.2 51.61±3.2 59.50±2.1 71.38±1.1 62.64±0.2 71.98±1.0
40 45.77±1.5 65.66±1.5 64.77±0.5 64.50±0.7 58.97±0.9 63.85±1.5 54.72±2.6 61.92±2.1 73.75±0.5 68.17±0.2 75.57±1.2
60 44.91±2.0 63.74±1.6 60.65±0.3 65.53±0.7 57.34±1.4 62.02±1.2 55.45±2.4 61.15±2.5 75.80±1.8 68.21±0.2 74.57±0.7

Auc
20 70.86±2.5 85.39±1.0 81.22±0.3 83.35±0.5 77.96±1.4 78.92±2.3 75.89±2.2 85.34±0.9 90.82±0.6 86.29±4.1 90.19±0.7
40 74.44±1.3 88.29±1.0 88.82±0.2 88.70±0.4 83.14±1.6 80.72±2.1 77.86±2.1 88.02±1.3 92.11±0.6 89.98±0.0 94.41±0.8
60 74.16±1.3 86.92±0.8 85.57±0.2 87.74±0.5 84.77±0.9 80.39±1.5 77.21±1.4 86.20±1.7 92.40±0.7 88.32±0.0 94.25±0.9
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Figure 3: Hyperparameter study in terms of Recall@20.

3.4 Impact of Hyperparameters (RQ3)
This section examines the impact of hyperparameter settings. The
results are presented in Figure 3. We make the following analysis.
• Graph propagation iterations 𝐿. Tested within 1, 2, 3, 4. Per-
formance improves up to 𝐿 = 3; beyond this, additional layers
may introduce noise and result in over-smoothing issues [3, 43].

• Embedding dimensionality 𝑑 . anges tested were 16, 32, 64,
128, 256. As 𝑑 increases, there’s a general improvement in per-
formance, peaking before 𝑑 = 256, where performance slightly
declines due to potential overfitting.

• Maximum diffusion steps𝑇 . Varied from 10 to 250. Increasing
the diffusion steps 𝑇 typically enhances the performance for
DiffGraph, but very high values degrade it, likely due to the
excessive noise disrupting social information integrity.

• Noise scale 𝑆 . Evaluated at scales 1e-3, 1e-4, 1e-5, 1e-6 with
respective AUC scores of 0.7966, 0.8025, 0.7988, 0.7974 on the In-
dustry dataset. Optimal noise scales improve model performance
by enhancing denoising effectiveness; however, excessively high
scales diminish performance by obscuring key graph semantics.
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Figure 4: Test performance v.s. training epochs.

3.5 Efficiency Study (RQ4)
This section assesses the computational efficiency of DiffGraph.
On industry data, we conducted a convergence analysis shown in
Figure 4. We also compared the per-epoch running time of Diff-
Graph and baselines on two link datasets with the following results:
Tmall: HGT, 16.824s,MBGCN, 12.644s, DiffGraph, 6.558s. Re-
tail_rocket: HGT, 2.451s, MBGCN, 2.312s, DiffGraph, 1.811s.
The results show DiffGraph consistently outperforms baselines in
training efficiency, benefiting from its effective hidden diffusion.

3.6 Performance w.r.t. Data Sparsity (RQ5)
We further assess how the diffusion model in DiffGraph address the
data sparsity issue in heterogeneous graph learning. For the Tmall
dataset, we split nodes into five groups based on interaction counts
(e.g., "<8", "<65"), and evaluate the performance on each group. The
results are shown in Figure 5. Our observations include:
• Trend in Performance. As edges per node increase, so does
performance across all methods, indicating better embeddings
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Table 3: Performance decay caused by different noise ratios.

Noise Ratios 10% 30% 50%
Recall NDCG Recall NDCG Recall NDCG

pv DiffGraph 98.28% 96.31% 98.80% 97.05% 97.42% 96.68%
HGT 96.98% 94.79% 97.45% 96.35% 95.59% 90.10%

fav DiffGraph 97.93% 95.57% 99.14% 95.57% 98.62% 96.31%
HGT 98.14% 93.75% 97.68% 91.67% 97.22% 89.06%

cart DiffGraph 98.97% 98.15% 98.28% 97.42% 96.73% 92.62%
HGT 98.61% 96.88% 96.29% 95.31% 95.82% 92.19%
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Figure 5: Performance w.r.t. different data sparsity

from richer edge data. However, performance dips in groups with
"<10" and "<65" links, likely due to fewer test samples.

• Effect of Heterogeneity Learning. Heterogeneous models
(MBGCN, HGT) outperform the homogeneous NGCF, showing
that multiple context fusion effectively combats data sparsity.

• Superiority of DiffGraph. DiffGraph consistently surpasses all
baselines, suggesting its diffusion-based approach effectively pre-
serves and utilizes heterogeneous behavioral data, thus offering
a robust solution to data sparsity challenges.

3.7 Exploration of Anti-Noise Capacity (RQ6)
To study the model robustness against data noise, we evaluate the
percentage of performance degradation for each heterogeneous
relation under different noise ratios (Table 3). In our experiment, 0,
10%, 30% and 50% of the heterogeneous relations are randomly re-
placed by noise signals.We tested the performance of DiffGraph and
HGT on the Tmall dataset. The results demonstrate that our model
experiences a markedly less pronounced decline in performance in
comparison to the baseline model. Such findings substantiate the
enhanced denoising capability of our DiffGraph approach.

3.8 Case Study (RQ7)
We utilized the t-SNE technique to visualize the embeddings of
different relation types from the Tmall dataset, color-coding each
type for distinction. By comparing the behavior embedding of our
DiffGraph to its variant "-D" (which lacks the denoising module),
it’s evident that our model achieves clearer separation, drawing em-
beddings with similar semantics closer together. This demonstrates
our model’s proficiency in capturing and refining heterogeneous
data through hidden-space diffusion and denoising, effectively re-
ducing noise and enhancing semantic accuracy. By optimizing the
semantic diffusion from source to target, our method efficiently pro-
cesses and highlights diverse information across graph structures,
significantly improving learning outcomes.

4 RELATEDWORK
Graph Neural Networks. Graph learning has evolved substan-
tially, with GNNs demonstrating significant impact across domains
including spammer detection [22, 42, 50], recommender systems [9,

-D DiffGraph

Figure 6: Embedding visualization on the Tmall dataset.

47], and machine translation [25, 41]. While traditional GNNs like
Graph Convolutional Networks (GCNs) [12, 52] and Graph At-
tention Networks (GATs) [24, 51] have advanced representation
learning on graphs, they primarily focus on homogeneous or simple
bipartite structures. To address the limitations in modeling complex
heterogeneous graph relations, we propose a denoised heteroge-
neous graph neural network based on the diffusion model.
Heterogeneous Graph Learning. Heterogeneous graphs, featur-
ing diverse node and link types, are crucial in various real-world ap-
plications. Heterogeneous graph neural networks (HGNNs) develop
node embeddings that capture complex semantics for tasks like
node classification, edge classification, and link prediction [32, 49].
Methods like HetGNN [49] and MAGNN [10] incorporate attention
mechanisms and meta-path aggregations to refine these embed-
dings. HGT [17] leverages a transformer-based architecture for
modeling diverse relationships. While these methods enhance the
capture of heterogeneous semantics, they often ignore noise and
irrelevant information. Our model introduces a diffusion-based de-
noising mechanism to extract genuine, task-relevant information.
Generative Models for Graph Learning. Graph generation aims
to uncover structural patterns, mitigate anomalies, and simulate
new graphs, garnering significant interest. Traditional models [1, 7,
21] were limited to generating graphs with specific statistical traits.
However, advancements in deep learning have expanded possibili-
ties. Techniques like Generative Adversarial Networks (GANs) [36]
and Variational Autoencoders (VAEs) [48] play key roles in data
generation and graph task learning. Recent efforts, including diffu-
sion models [2, 4, 28], focus on generative recommendation with
enhanced capabilities. Despite these advancements, the use of these
models in graph denoising is limited. This work pioneers the appli-
cation of generative models to transition from auxiliary heteroge-
neous graphs to targeted semantic spaces.

5 CONCLUSION
This paper presents DiffGraph, a heterogeneous graph diffusion
model that advances graph learning through two key innovations:
1) A latent diffusion mechanism that progressively filters noise
while preserving task-relevant signals from source data, and 2) An
enhanced semantic transition framework that better captures rela-
tionships across different interaction types, enabling more nuanced
heterogeneous graph modeling. Extensive experiments conducted
on both public benchmarks and industrial datasets demonstrate our
approach’s superiority in terms of prediction accuracy and model
robustness. The results consistently validate the effectiveness of our
proposed techniques across various scenarios. Future work could
explore extending our model to dynamic heterogeneous graphs,
where both node attributes and graph structure evolve over time.
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ETHICAL CONSIDERATIONS
In this section, we examine the ethical implications of the DiffGraph
framework, which is designed to distill essential information from
auxiliary relational data for enhancing prediction tasks in heteroge-
neous graphs. Our discussion addresses potential ethical challenges
and considerations that may arise during both the implementation
and deployment phases of the DiffGraph framework.

Data Privacy and Consent. The DiffGraph framework processes
auxiliary relational data to enhance predictions in heterogeneous
graphs, which inherently raises important privacy and consent
considerations. When handling relational data, particularly those
containing personal information, strict compliance with data pro-
tection regulations (e.g., GDPR, CCPA) is paramount. The poten-
tial for unintended inference or exposure of sensitive information
through relational analysis presents a significant privacy concern,
especially if explicit user consent is not properly obtained. To ad-
dress these challenges, implementations must incorporate robust
safeguards, including strict access control mechanisms, advanced

data anonymization techniques, and transparent data usage poli-
cies. These measures are essential for protecting user privacy while
maintaining the framework’s analytical capabilities.

Transparency and Explainability. The sophisticated nature of
the DiffGraph framework, particularly its mechanisms for integrat-
ing and interpreting auxiliary relational data, presents significant
challenges in terms of transparency and explainability. In high-
stakes environments, stakeholders need clear understanding of
how the model arrives at its predictions and subsequent recom-
mendations. The inherent complexity of the model can potentially
obscure decision-making processes, making it difficult to identify
and rectify logical errors while potentially eroding stakeholder trust.
To address these challenges, it is crucial to develop robust explain-
ability methods, such as interpretable feature importance metrics
and comprehensive decision rationale documentation. These trans-
parency measures not only foster trust among stakeholders but
also ensure compliance with regulatory requirements and maintain
accountability throughout the model’s deployment lifecycle.
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